
Паёми политехникӣ. Бахши Техника ва Ҷомеа. № 4 (12) 2025 

9 
 

УДК: 624.04 (075)                                                                                                   DOI: 10.65599/VILT2001 

ЭФФЕКТИВНОСТЬ КОМБИНАЦИОННОГО ВОЗДЕЙСТВИЯ СТАТИЧЕСКИХ И 
ДИНАМИЧЕСКИХ СИЛ НА ДИСПЕРСИОННЫЙ МАТЕРИАЛ 

К.З.Тиллоев  
Таджикский технический университет имени академика М.С. Осими 

В материале рассмотрено аналитическое исследование эффективности способов комбинационного приложения 

вибрационного воздействия к дисперсному материалу (супеси, глины, суглинок) при учете сил трения о стенки формы. Для 

решения данной задачи рассмотрены напряжения, возникающие в прессуемом дисперсном материале при одновременном 

воздействии на него статической и вибрационной нагрузок и с учетом сил трения о стенки формы. Используя уравнение движения 

дисперсного материала, определены напряжения и деформации в дисперсном материале. Для этого сначала принято считать 

деформации малыми и линейными, что позволяет применять закон Гука и уравнения теории упругости. Задача рассмотрена на 

линейном приближении с учетом граничных условий. 
 

Ключевые слова: дисперсионный материал, математическая модель, статические и динамические нагрузки, сила 

трения о стенки формы, линеаризация уравнения, теория упругости.     

САМАРАНОКИИ ТАЪСИРИ КОМБИНАТСИОНИИ ҚУВВАҲОИ СТАТИКӢ ВА ДИНАМИКӢ БА 
МАВОДИ ДИСПЕРСИОНӢ 

Қ.З.Тиллоев  
Дар мавод таҳлили аналитикии самаранокии усулҳои татбиқи комбинатсионии таъсири ларзиши ба маводи дисперсионӣ 

(хоми хок, гил, хоми гил-гилин) бо назардошти қувваҳои соиш дар деворҳои қолаб баррасӣ шудааст. Барои ҳалли ин масъала, 

шиддатҳое, ки дар маводи дисперсионӣ ҳангоми фишурдани он ва таъсири ҳамзамони сарбориҳои статикӣ ва вибратсионӣ ва бо 

назардошти қувваҳои соиш дар деворҳои қолаб ба вуҷуд меоянд, мавриди таҳлил қарор дода шудаанд. Бо истифода аз муодилаи 

ҳаракати маводи дисперсионӣ шиддатҳо ва деформацияҳо дар маводи дисперсионӣ муайян карда шуданд. Барои ин аввал қабул 

шудааст, ки деформацияҳо хурд ва хаттӣ мебошанд, ки имкон медиҳад қонуни Гук ва муодилаи назарияи чандирӣ истифода 

шаванд. Масъала дар таҳлили хати бо назардошти шартҳои марзӣ баррасӣ шудааст.  
 

Калидвожаҳо: маводи дисперсионӣ, модели математикӣ, сарборҳои статикӣ ва динамикӣ, қувваи соиш ба деворҳои 

қолаб, хаттикунонии муодила, назарияи чандирӣ  

EFFICIENCY OF THE COMBINED INFLUENCE OF STATIC AND DYNAMIC FORCES ON 
DISPERSED MATERIAL 

K.Z. Tilloev  
The paper presents an analytical study of the efficiency of combined application methods of vibrational loading to a dispersed 

material (such as sandy loam, clay, and loam) considering the frictional forces along the mold walls. To solve this problem, the stresses 

arising in the compacted dispersed material under simultaneous static and vibrational loading, taking into account wall friction, are 

analyzed. Using the equation of motion for the dispersed medium, the stresses and strains in the material are determined. For this purpose, 

the deformations are assumed to be small and linear, which makes it possible to apply Hooke’s law and the equations of the theory of 

elasticity. The problem is considered within the linear approximation, subject to appropriate boundary conditions. 

Keywords: dispersive material, mathematical model, static and dynamic loads, wall friction force, linearization of the equation, 

theory of elasticity. 

 
Введение 

Методы уплотнения дисперсионных материалов (бетона, глины, силикатов и др. материалов) 
можно либо трамбовать малыми участками, либо укатывать. Эти методы распространены и используются 
прессуемыми оборудованиями типа коленно-рычажный пресс СМ-143А при изготовлении мелких 
строительных изделий и строительных сооружений, например: строительных конструкций типа кирпич, 
панель, брусчатка разных форм и размеров и машинами для поверхностного уплотнения основания 
земляного полотна дорожных покрытий с помощью дорожных катков, глубинного уплотнения методом 
образования скважины раскатывающим рабочим оборудованием и другие [1].  

Периодическое укатывание позволяет воздействовать на малую площадь прессуемого материала 
с высокой удельной нагрузкой. Такое укатывание эквивалентно одновременному воздействию 
статической и динамической нагрузки, которая уменьшает внешнее и внутреннее трение в прессуемом 
дисперсном материале [2].  

Ранее теоретически исследовался процесс прессования сыпучих тел под воздействием 
статической нагрузки с учетом действия сил трения между дисперсным материалом и стенками формы. 
Кроме того, известны работы по изучению воздействия вибрационной нагрузки на уплотнение дисперсных 
материалов без учета действия сил трения о стенки формы [3-4]. 

 Ниже рассматривается задача определения напряжений в прессуемом дисперсном 
материале при одновременном воздействии на него статической и вибрационной нагрузки с учетом сил 
трения о стенки формы. 

Теоретическое исследование  

Рассмотрим дисперсный материал 2, помещенный в пресс форму 1 (рис. 1), имеющую 
произвольное очертание в плане. На материале сверху располагается пригруз массой М, к которому 
прилагается статическая сила Р, действующая вниз, и гармоническая сила Qeiωt. 
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Выведем уравнение движения дисперсного материала. Расположим координатные оси, как 
показано на рис. 1. Рассмотрим связь между напряжениями σх, σу и σz и деформациями εх, εу и εz в 
дисперсном материале. Будем первоначально считать деформации малыми, а материал линейным, 
подчиняющимся закону Гука. Тогда, используя уравнения теории упругости [4-5], можно записать 

 

 
Рисунок 1 – К разработке теории технологии прессования  1.-пресс-форма, 2-дисперсный материал, 3-пригруз 

 

 
Рисунок 2 – Расчетная схема воздействия сил на дисперсный материал  
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yzyxy G 2)( +++=
                                                                  (1) 

                                                                    zzyxz G 2)( +++=  

здесь 
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Постоянные Ламе, а E и µ - модуль упругости и коэффициент Пуассона. 
Вследствие стесненной деформации, вызванной действием стенок формы, можно считать, что εz 

и εy εx  
Тогда из (1) следует  

                                                  xx G  )2( + , xy    и xz                                                               (3) 

Из последних выражений получаем 
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Таким образом, напряжения σy и σz в первом приближении пропорциональны напряжению σx. 
Примем, что на стенках формы 

                                                                               y и xz  =                                                                                (5) 

где ξ- коэффициент бокового распора. 
Далее будем рассматривать квазиодноосное напряженное состояние с учетом формулы (5). 

Поэтому к деформируемому дисперсному материалу применим гипотезу, согласно которой поперечные 
сечения при деформации остаются плоскими. Вырежем из дисперсного материала слой толщиной dx (рис. 
1 и 2) и рассмотрим условия его равновесия. На нижнюю и верхнюю поверхности выделенного элемента 

площадью F действуют силы σxF и (𝜎𝑥 +
𝜕𝜎𝑥

𝜕𝑥
𝑑𝑥)𝐹. На боковую поверхность выделенного элемента 

действует сила трения с модулем |𝑑𝑃тр| = 𝜏𝑥𝑑𝑥П = 𝜉𝜎𝑥𝑓𝑑𝑥П. 

Здесь 𝜏𝑥 - напряжение трения, 𝑓- коэффициент трения и П-периметр рассматриваемого элемента. 

Знак силы трения соответствует знаку скорости 
𝜕𝑢

𝜕𝑡
. Следовательно, для силы трения окончательно можно 

записать 

                                                                    fdxПdР xтр =
t

и
sign




                                                        (6) 

Итак, на вырезанный элемент толщиной dx действует суммарная сила 

                                                 fПdx
x

FdP x
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
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Согласно (3) можно записать  
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 В последней формуле можно принять 
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где k - суммарная жесткость всего объема материала высотой l. 
Итак, 

                                                  
x
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где и – перемещение.  
Внося (10) в (7), окончательно получаем  
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Учитывая, что масса вырезанного элемента материала плотностью ρ   будет dm= ρFdx, а его 

ускорение 
𝜕2

𝑢

𝜕𝑡2, находим следующее уравнение движения 
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Здесь Mo=ρFl- полная масса деформируемого материала. 

Полученное выражение является существенно нелинейным волновым уравнением, решение 

которого представляет значительные трудности, как вследствие наличия нелинейной функции 𝑠𝑖𝑔𝑛
𝜕𝑢

𝜕𝑡
, так 

из-за ее произведения на линейную функцию 
𝜕𝑢

𝜕𝑥
. Кроме того, в связи с тем, что мы изучаем колебательные 

процессы, жесткость k будем считать комплексной  

                                                                                    
)1(0 ikk +=

                                                                                 (13) 

где ko - динамическая жесткость прессуемого дисперсного материала, и η - коэффициент потерь. 
Динамическую жесткость (или динамический модуль упругости и коэффициент потерь в данном 

случае следует рассматривать как обобщенную реологическую характеристику прессуемого дисперсного 
материала, характеризующую его сжимаемость и внутреннее трение при колебаниях). 

Аналогичный подход к реологическим характеристикам применяют при рассмотрении свойств 
бетонных смесей при вибрационных воздействиях [6,9]. 

Решение уравнения (12) представляет гораздо большие трудности, нежели решение уравнения, 
описывающего движение забиваемой сваи, в котором также учитывается сухое трение на боковой 
поверхности [10, 13] 
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Учет граничных условий 

Установим граничные условия для задачи, описываемой уравнением (12).  
Совершенно естественно, что на двух пресс-формах отсутствует перемещение u=u(x,t)  

Таким образом, 

                                                                                      0),( =toи                                                                                   (14) 

В качестве второго граничного условия используем уравнение движения пригруза, установленного 
сверху на дисперсном материале. Это уравнение имеет вид 

                                                                      ++−=



== PQeP

t
M ti

lxlx

)(
2

2

                                                               (15) 

здесь 𝑃- сила, действующая на пригруз массой M со стороны дисперсного материала. Для определения 
этой силы интегрируем (11). 

                                                                   
F

П
fklи

x

и
klP +



=
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и
sign




                                                                 (16) 

С учетом (16) из (15) окончательно находим 

                                       и
F

П
fkl

x

и
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t
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


−=




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и
sign ti
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                                   (17) 

При отсутствии сухого трения (f=0) граничное условие (17) упрощается 

                           PQe
x

и
kl

t

и
M ti

lxlx ++



−=


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==
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                                                          (18) 

Решение задачи в линейном приближении 

Предположим, что отсутствует трение между прессуемым дисперсным материалом и стенками 
пресс-формы, т.е. f=0.  При этом предположении уравнение (12) упрощается 

                                                              
2

2

2

2

dx

и

M

kl

dt

и

o


=


                                                            (19) 

Решим последнее уравнение совместно с граничными условиями (14) и (18) для вынужденных 
колебаний с угловой частотой ω. Решение уравнения (19) будем разыскивать в виде 

                                                     )()(),( 21 xиexиtxи ti += 
                                                        (20) 

Внесем (20) в уравнение (19). Разделяя получаемое выражение на части, зависящие и 
независящие от времени, находим 

                                                     0)()( 12

2
//

1 =+ xи
kl

M
xи o

                                                        (21) 

и 

                                                                0)(//

2 =xи                                                                    (22) 

Решение уравнения (21) разыскиваем в виде 

                                                               
xexи 1)()1(

1

=                                                               (23) 
Здесь верхний индекс (1) при u1(x) и нижний индекс 1 при γ обозначают первое (линейное) 

приближение решения задачи. 
 Внося (23) в (21), находим 

                                                                                    
2

2
2

1
kl

Mo −=                                                                               (24) 

Квадратное уравнение (24) с учетом выражения (13) позволяет определить два корня постоянной 
распространения γ1 в зависимости от физических и реологических характеристик материала Mo,ko и η  

                                                 
)1(

)( 111




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M

l
ii o

+
=+=                                                (25) 

При η2 «1 (эта зависимость, как правило, выполняется), из (25) находим первые приближения 
коэффициента затухания α1  и волнового числа β1   

2
1




ko

M

д
o                                               
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M

д
o
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Таким образом, в итоге имеем 

                                                 
xx ececxи 11 )1(

2

)1(

1

)1(

1 )(  −+=                                                  (27) 
Здесь c1

(1) и c2
(1) - первые приближения произвольных постоянных. 

Из уравнения (22) находим 

                                                              212 )( ДxДxи +=                                                          (28) 
Из (27), (28) и (14) следует, что 
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Вносим зависимости (27) - (29) в выражение (18), которое распадается на два уравнения, 

позволяющие определить 
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С учетом (27) - (31) окончательно находим 
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И, наконец, находим 
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                                                      (34) 

В последующем при вычислениях следует иметь ввиду, что жесткость k в формуле (33) следует 
считать не комплексной, а динамической. 

Выводы 

В работе рассмотрена эффективность процесса прессования дисперсного материала с учетом 
трения сил о стенки формы при комбинационном воздействии статических и динамических сил. Последние 
приложены в виде вибрационного воздействия. Процесс прессования представляет собой в этом случае 
достаточно сложный процесс, для его анализа был принят ряд упрощающих допущений, не меняющих 
физическую сущность процесса, но позволяющих получить линейную математическую модель, которая 
была решена на основе положений теории упругости. Полученные уравнения напряжений в прессуемом 
дисперсном материале имеют аналитическое выражение, доступное для числовых расчетов на ЭВМ.       

Из последнего выражения (34) следует, что напряжение в дисперсном материале при приложении 
гармонической силы и при условии, что колебательная система "отперта", состоит из двух членов. Первый 
член представляет собой колебательное напряжение, а второй член представляет собой постоянное 
напряжение, не зависящее от координаты, т.е. одинаковое в тех точках по высоте, где колебательная 
система "отперта". 

Таким образом, приложение вибрационной нагрузки "отпирающего" колебания создает условия, 
при которых появляются напряжения постоянные по высоте. 
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